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Constitutive relations

MPAS-Ocean Eulerian Model Equations

Primitive Equations: incompressible, hydrostatic, Boussinesq

mass (volume)

momentum
Navier-Stokes equation

tracers (temperature, salinity)
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ρ = ρ T,S, p( )

hydrostatic in the vertical
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equation of state

Ringler et al. 2013, Ocean Modelling

Conservation Equations
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Lagrangian In-situ Global High-
performance particle Tracking 
(LIGHT)

EC30to60 mesh showing 
temperature and particle 
position.

• Developed in 2015 by Phillip 
Wolfram

• Parallel particle tracking at exascale
for climate simulation

• Vertical Motion
− Fixed Depth
− Adiabatic motion (isopycnal)

• Horizontal Motion
− Interpolated from Eulerian grid

𝑑𝒙
𝑑𝑡

= 𝒖(𝒙, 𝑡)
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Why use Lagrangian
Particles?
• Lagrangian particles are 

used to simulate data 
collection devices such as 
Argo, RAFOS, and Drifters.

• Useful for testing methods of 
data assimilation.

Image of Argo float.
By Brn-Bld - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=21398989
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Methodology
• Run baseline performance tests

−Scaling as a function of number of particles.
−Scaling as a function of number of cores.

• Convert per-particle variables to global flags
−Original design was versatile but less performant.
−Timestep, reset functionality
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Results

• Particles are suspended 
at different levels of 
buoyancy.

• Simulations used one 
particle per cell on each 
buoyancy surface.
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Results
Strong Scaling Test, LIGHT Only

• Test was run on cori-haswell at NERSC
• Run with 500k particles (2 per grid cell)

Strong Scaling Test, Full Ocean Model

1 node
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Summer LIGHT Performance Results

• Creation of global flags produced a marginal speedup 
in running simulations with LIGHT, ~2%.

• Decreased the memory usage significantly for 
particles, ~15%.

• These are the results from my Parallel Computing 
Summer Research Institute Project.

• Will continue working through May 2022 on 
assimilation of particle data for DOE SCGSR 
program. 
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Data Assimilation

Consider a dynamical system of the form
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Continuous Data Assimilation

Here, 𝜇 > 0 is a constant relaxation parameter (units 1/time), and 
𝐼- 𝑓 = 𝐼- 𝑓, 𝑋 denotes the interpolation in space of 𝑓 = 𝑓(𝑥, 𝑡).

Simulation to obtain “observations”.

Simulation to test data assimilation.
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Interpolation Term

Here, 𝜇 > 0 is a constant relaxation parameter, with 𝐼1→3 and 𝐼3→1
are interpolation operators.

𝐼3→1(𝑣) interpolates the value of v at the locations of the Lagrangian
particles from the Eulerian grid.

𝐼1→3 interpolates from the locations of the Lagrangian particles back 
to the Eulerian grid.

𝜇𝐼1→3 𝑢 − 𝐼3→1 𝑣 ,
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Brief Recent History of AOT Algorithm

Recent 
Studies

2D simulations (Gesho, Olson, Titi, 2015)

Stochastic noisy data (Bessiah, Olson, Titi, 2015)

2D Abridged (Farhat, Lunasin, Titi, 2016)

Discrete in time data (Foias, Mondaini, Titi, 2016)

Statistical solutions (Biswas, Martinez, 2017)

Fully Discrete Case (Mondaini, Titi, 2018; Larios, Rebholz, Zerfas, 2018)

Parameter Recovery (Carlson, Hudson, Larios, 2018)

Time averaged data (Jolly, Martinez, Olson, Titi, 2019)

2D MHD using one component of velocity & magnetic fields (Biswas, Hudson, Larios, Pei, 2018)

Dynamical downscaling of general circulation models (Desamsetti et al. 2019)

2D NSE with local observers (Biswas, Bradshaw, Jolly, 2020)

MPAS-Ocean mesoscale eddies  (Carlson, Van Roekel, Godinez, Petersen, Larios, 2021)

Development 
of Algorithm

Nudging (Anthes, 1974; Hoke, Anthes, 1976)

Stabilization of NSE steady states (Cao, Kevrekidis, Titi, 2001)

Determining Modes (Olson, Titi, 2003)

Lorenz (Hayden, Olson, Titi, 2011)

Reaction-Diffusion (Azouani, Titi, 2014)

2D NSE (Azouani, Olson, Titi, 2014)
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Mobile Observers in 2D Navier-Stokes

We studied the use of observers that move dynamically in time 
according to various movement patterns.

• Placed in random locations and 
moved frequently.Bleeps

• Moving strips that measure full solution (Thin).
• Moving uniform grid covering ¼ of domain (Thick).
• Random locations with random velocities (Random).

Sweeps

• Randomly walk around domain.Creeps

• Follow Lagrangian particle 
trajectories.Lagrangian
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Demo: Lagrangian and Thick-Sweeps
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Exponential Convergence to Observational Data

• 2D NSE solved using pseudo-spectral methods with spatial resolution 1024:.
• 𝜈 = 0.0001 with forcing as in Gesho, Olson, Titi (2015).
• 𝜇 values were varied between methods. 

Log-linear plot comparing convergence rates for methods initialized approximately the same number of observers.
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Conclusions for 2D Navier-Stokes
• Exponential convergence  of simulations to 

observations for all observer types.

• Mobile observer methods outperform static observers 
except in the case of Lagrangian particles.

• Manuscript nearly submitted on this work.

• Next, we will implement Lagrangian data assimilation 
using LIGHT in MPAS-Ocean to test these methods 
on a realistic ocean model.
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Exponential Convergence to Observational Data

• 2D NSE solved using pseudo-spectral methods with spatial resolution 1024:.
• 𝜈 = 0.0001 with forcing as in Gesho, Olson, Titi (2015).
• 𝜇 values were varied between methods. 

Log-linear plot comparing convergence rates for methods initialized approximately the same number of observers.


